Low Linear Complexity Estimates for Coordinate Sequences of Linear Recurrences of Maximal Period over Galois Ring

نویسنده

  • Vadim N. Tsypyschev
چکیده

In this work we provide low rank estimations for coordinate sequences of linear recurrent sequences (LRS) of maximal period (MP) over Galois ring R = GR(pn, r), p ≥ 5, r ≥ 2, with numbers s such that s = kr + 2, k ∈ N0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Complexity of Designs based on Coordinate Sequences of LRS and on Digital Sequences of Matrix/Skew LRS Coordinate Sequences over Galois Ring

This article continues investigation of ways to obtain pseudo-random sequences over Galois field via generating LRS over Galois ring and complication it. Previous work is available at http://eprint.iacr.org/2016/212 In this work we provide low rank estimations for sequences generated by two different designs based on coordinate sequences of linear recurrent sequences (LRS) of maximal period (MP...

متن کامل

Expansion and linear complexity of the coordinate sequences over Galois rings

The coordinate sequences of the trace sequences over a Galois ring defined by the trace function are used significantly in cryptography, coding and communication applications. In this paper, a p-adic expansion for the coordinate sequences in terms of elementary symmetric functions is provided for the case that the characteristic p of the residue field of the Galois ring is an arbitrary prime, w...

متن کامل

A Gilbert-Varshamov type bound for linear codes over Galois rings

In this paper we derive a Gilbert-Varshamov type bound for linear codes over Galois rings. For linear codes over the Galois ring GR(pl; j) the result can be stated as follows. Given r; such that 0 < r < 1 and 0 < H 1 pj (1 r): Then for all n N; where N is a sufficiently large integer, there exist [n; k] GR linear codes over GR(pl; j) such that k=n r and d=n : Consequently, this bound does not g...

متن کامل

Criterion of Maximal Period of a Trinomial over Nontrivial Galois Ring of odd Characteristic

In earlier eighties of XX century A.A.Nechaev has obtained the criterion of full period of a Galois polynomial over primary residue ring Z2n . Also he has obtained necessary conditions of maximal period of the Galois polynomial over Z2n in terms of coefficients of this polynomial. Further A.S.Kuzmin has obtained analogous results for the case of Galois polynomial over primary residue ring of od...

متن کامل

Linear Complexity of Quaternary Sequences Over Z4 Derived From Generalized Cyclotomic Classes Modulo 2p

We determine the exact values of the linear complexity of 2pperiodic quaternary sequences over Z4 (the residue class ring modulo 4) defined from the generalized cyclotomic classes modulo 2p in terms of the theory of of Galois rings of characteristic 4, where p is an odd prime. Compared to the case of quaternary sequences over the finite field of order 4, it is more difficult and complicated to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016